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ABSTRACT
A geospatial database is today at the core of an ever increasing num-
ber of services. Building andmaintaining it remains challenging due
to the need to merge information from multiple providers. Entity
Resolution (ER) consists of finding entity mentions from different
sources that refer to the same real world entity. In geospatial ER, en-
tities are often represented using different schemes and are subject
to incomplete information and inaccurate location, making ER and
deduplication daunting tasks. While tremendous advances have
been made in traditional entity resolution and natural language
processing, geospatial data integration approaches still heavily rely
on static similarity measures and human-designed rules. In order to
achieve automatic linking of geospatial data, a unified representa-
tion of entities with heterogeneous attributes and their geographical
context, is needed. To this end, we propose Geo-ER1, a joint frame-
work that combines Transformer-based language models, that have
been successfully applied in ER, with a novel learning-based archi-
tecture to represent the geospatial character of the entity. Different
from existing solutions, Geo-ER does not rely on pre-defined rules
and is able to capture information from surrounding entities in
order to make context-based, accurate predictions. Extensive exper-
iments on eight real world datasets demonstrate the effectiveness
of our solution over state-of-the-art methods. Moreover, Geo-ER
proves to be robust in settings where there is no available training
data for a specific city.

CCS CONCEPTS
• Information systems→ Entity resolution; •Geographic infor-
mation systems→ Information integration.

KEYWORDS
Entity resolution, neural networks, geospatial data, neighbourhood
embedding, graph attention
1https://github.com/PasqualeTurin/Geo-ER

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512026

ACM Reference Format:
Pasquale Balsebre, Dezhong Yao, Gao Cong, and Zhen Hai. 2022. Geospatial
Entity Resolution. In Proceedings of the ACM Web Conference 2022 (WWW
’22), April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3485447.3512026

1 INTRODUCTION
A complete and high quality geospatial database is a key element to
improve quality of service for navigation, social networks, advertis-
ing, and logistics. However, such data is rarely contained in a single
source, but rather distributed across several different location-aware
applications, like Location-Based Services (LBS) or Map Services,
with each provider having only partial coverage of the geographical
picture. As a result, there is a great interest in joining information to
build a comprehensive overview of geospatial entities. Integrating
spatial data from multiple sources poses several challenges: each
source, in fact, represents entities with a different schema and data
suffers from inconsistency, redundancy, and ambiguity. A suitable
linking schema is highly desirable to perform deduplication and
considerably enhance the combined database. This represents a
critical step towards automatic geospatial integration.

Entity resolution (ER) [4, 6, 12] is the task of finding entity men-
tions from two different data sources, that refer to the same real-
world entity. Given its substantial number of applications, it has
received significant attention in recent years. In this work, we focus
on geospatial ER. A geospatial entity is typically identified by the
combination of a spatial position and a set of textual attributes. An
example of the challenges presented by geospatial ER is depicted
in Figure 1a. In the first candidate pair, different words are used to
express the same concept (& = and, street = st), the Points of Interest
(POIs) names have a different number of words and the address
information in the left table is incomplete. However, they are lo-
cated at a very short distance. All the aforementioned insights must
play a role in the final matching decision. In the second example,
only the name and the geospatial location are available for com-
parison: a small difference in the name of the business (Mitchell’s
≠ Michelle’s) is an important clue that the two POIs cannot match.
Static similarity measures, applied on the Name attribute, would
result in a high similarity score, ignoring the role that each word
has in the context. Language modeling capabilities are necessary
to capture the semantics of the words and figure out a common
word like Diner in the name, is not informative enough to match
the two candidates. Finally, in the last pair, the names perfectly
overlap and the distance is still acceptable, considering the error

https://doi.org/10.1145/3485447.3512026
https://doi.org/10.1145/3485447.3512026


WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Pasquale Balsebre, Dezhong Yao, Gao Cong, and Zhen Hai

(a) Examples of geospatial entity resolution (b) Observing the neighbourhood, Geo-ER can capture
the context where the entities are located. A, B and the
neighbours (smaller pins) are Starbucks POIs

Figure 1

in Geo-positional systems; nonetheless Starbucks is a very popular
chain and the two POIs are located in the dense district of Orchard
(Figure 1b), in Singapore: these suggest that it is still reasonable to
have two distinct POIs with the same name even if they are in a
short distance.

In the past few years, tremendous progress has been made in en-
tity resolution, but most of the existing solutions focus on attribute
comparison and language understanding to match non-spatial enti-
ties [13, 20, 21, 25]. Recent efforts in the geospatial data integration
community rely on manually-designed rules [19] or static string
similarity measures [24, 40]. In order to address the challenges
presented in Figure 1, especially in case of incomplete address in-
formation, language modeling techniques are not sufficient and we
argue that additional knowledge, like the context where an entity
is located, needs to be considered.

We present Geo-ER, a geospatial linking model, with language
understanding, numeracy, and spatial capabilities. We design a
novel geospatial attention component to make context-based predic-
tions. Figure 1b shows how, taking into account the neighbourhood
of the entities in the third example of Figure 1a, can contextualize
their representation, simplifying geospatial ER. Several fields have
greatly benefited from contextual information: in natural language
processing, contextual word embedding models, like ELMo [29] and
BERT [9], have obtained state-of-the-art results in several tasks; in
computer vision, context-based vision simplifies object recognition
[34]. Following a similar intuition, we propose to leverage context
information for the geospatial linking task. The contributions of
this paper can be summarized as follows:

• We introduce Geo-ER, a unified framework to match geospatial
entities from different data sources, using their textual attributes,
geospatial information, and the context where they are located.
This represents a step towards automatic geospatial integration,
with various applications ranging from recommendation systems
to logistics services.

• We make Geo-ER context-aware by developing a neighbourhood
embedding component, based on the graph attention (GAT)mech-
anism [36], together with pre-trained language models for textual

attribute comparison. This enables Geo-ER to produce a more
contextualized representation of the entity, resulting in higher ac-
curacy in ER. No previous work has proposed using surrounding
entities’ information to improve geospatial data integration.

• Extensive experiments on eight real-world datasets, from three
different sources, are performed along with comparisons to ex-
isting state-of-the-art algorithms, including the recent approach
Ditto [21], to demonstrate the advantages of our proposed solu-
tion. Geo-ER can rely on both textual and geospatial components
and displays robustness with respect to missing attributes, im-
precise positional information, and cross-city validation.

2 RELATEDWORK
2.1 Entity Resolution
Several proposals have tackled the matching problem in Entity Res-
olution using human-designed rules [7, 11, 39] and crowd-sourcing
[16, 38]. Rule-based solutions benefit from the high interpretabil-
ity of the models but are time- and resource-expensive, requir-
ing the involvement of domain experts and performing poorly on
non-structured data [25]. Deep Learning-based approaches have
emerged as the state-of-the-art solutions for ER, mostly due to
their ability to dynamically learn a distributed representation of
the entities. DeepER [10] and DeepMatcher [25] are two pioneering
solutions in the adoption of deep learning architectures for ER.
DeepER uses LSTMs to represent tuples in a distributed fashion,
whereas DeepMatcher proposes a sequence-aware model combin-
ing RNNs and attention mechanism. Following the DeepMatcher
framework, M2M [15], Seq2Seq [26] and HierMatcher [14] are pro-
posed to get better performance on some datasets.

Recently, pre-trained language models (LMs), such as BERT [9],
that have been trained on unsupervised language modeling tasks
on massive text corpora have been used for entity resolution and
achieved better accuracy. Ditto [21] casts ER as a sequence-pair
classification problem based on fine-tuning pre-trained LMs and
proposes domain knowledge injection to highlight specific spans
of tokens, as well as several data augmentation operators. Li et
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Figure 2: A general overview of Geo-ER. The three main components are: (1) Transformer-based language model (Section 3.3)
for textual attributes comparison, (2) Distance Embedding component (Section 3.4) to compute and embed the geographical
distance between the two entities, (3) NeighbourhoodAttention (Section 3.5) to embed information of the surrounding entities.
As shown in the figure, in the LM input, t1 and t2 are the serialization of the two entities e1 and e2

.

al. [20] make use of a siamese network structure based on BERT,
both to speed up the blocking phase and compare candidate pairs.
Peeters and Bizer [27] present JointBERT for entity matching with
multi-class classification. All the aforementioned solutions are not
designed to consider the geographical character of an entity. Ditto
supports many pre-trained LMs, its optimization techniques are
relevant for the geospatial linking task and it achieved state-of-the-
art results on a wide number of ER benchmark datasets, making it
the most suitable algorithm for empirical comparison with Geo-ER.

2.2 Geospatial Entity Resolution
Some contributions in geographical data integration focus on purely
spatial objects, i.e., entities that are determined solely based on their
coordinates. Solutions in [1, 3, 33] aim to create a unified spatial
representation for spatial objects deriving from sensors and radars.
Schäfers and Lipeck present SimMatching [31] for similarity-based
spatial matching of road networks. Comparisons are performed
between road attributes (e.g., length, shape, road name) to filter
out duplicates in an integrated database. Unlike purely spatial ob-
jects, spatial entities are identified by a combination of spatial and
textual attributes. Different spatial entities might share the same
name (e.g., a chain of restaurants) or the same position (e.g., a shop-
ping mall), making the task of entity resolution more challenging.
Existing works tackle the problem of geospatial ER using differ-
ent rules to compare both spatial and non-spatial attributes. In [8]
Deng et al. specify a set of attribute similarity measures, a simple
attribute selection strategy and use the improved D-S evidence
theory to combine attribute-matched results. Shivaprabu et al. [32]

propose an ontology-based instance matching architecture to in-
tegrate geospatial urban data. In [24], Morana et al. use Euclidean
distance to measure the distance between the POIs, Levenshtein
similarity for textual attributes like address and name, Resnik simi-
larity (Wordnet [23]) for the category. In [18] Isaj et al. introduce
SkyEx to match POIs from different sources, based on the Pareto
optimality, without the need of weights, scoring functions, nor a
training set and achieve state-of-the-art results in multi-source spa-
tial entity linkage. Most of the aforementioned works still heavily
rely on manually-designed rules and thresholds or textual similarity
metrics, which fail to capture the semantics of the words. Moreover,
none of them takes into account information from surrounding
entities during the matching decision.

3 METHOD
We first formalize the geospatial ER problem in Section 3.1 and
subsequently present our solution, component by component, jus-
tifying our design choices as well as their respective advantages.

3.1 Problem Setting
The problem of geospatial Entity Resolution considered in this
work is stated as follows: Given two geospatial databases 𝐷1 and
𝐷2, containing |𝐷1 | and |𝐷2 | records, respectively, we aim to find all
the couples of entities, one from𝐷1 and the other from𝐷2, that refer
to the same real-world entity. Such entities are called matches. A
geospatial entity 𝑒𝑖 is identified by a set of textual attributes {name𝑖 ,
address𝑖 , zipcode𝑖 } and a geospatial position {latitude𝑖 , longitude𝑖 }.
In the ER pipeline, the matching phase is always preceded by the
blocking phase.
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Algorithm 1 Geo-ER

Require: Geospatial entities datasets 𝐷1 = {𝑒11, 𝑒
1
2, ...𝑒

1
𝑛}, 𝐷2 =

{𝑒21, 𝑒
2
2, ...𝑒

2
𝑚}, Candidate set 𝐶 from blocking, pre-trained lan-

guage model (LM)
training;

1: for each pair (𝑒𝑖 , 𝑒 𝑗 ) in 𝐶 do
2: Retrieve neighbourhood of (𝑒𝑖 , 𝑒 𝑗 ) from blocking
3: 𝑦 (𝑒𝑖 ,𝑒 𝑗 ) = Geo-ER(𝐿𝑀 (𝑒𝑖 , 𝑒 𝑗 ), 𝑑𝑖𝑠𝑡 (𝑒𝑖 , 𝑒 𝑗 ), 𝑛𝑒𝑖𝑔ℎ_𝑎𝑡𝑡𝑛(𝑒𝑖 , 𝑒 𝑗 ))

4: 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 (𝑦 (𝑒𝑖 ,𝑒 𝑗 ) , 𝑦 (𝑒𝑖 ,𝑒 𝑗 ) )
5: backprop
6: end for

prediction;
7: Given unlabeled tuple 𝑡
8: Retrieve neighbourhood of 𝑡 from blocking
9: result = Geo-ER(𝐿𝑀 (𝑡), 𝑑𝑖𝑠𝑡 (𝑡), 𝑛𝑒𝑖𝑔ℎ_𝑎𝑡𝑡𝑛(𝑡))
10: return result

Blocking. In real-world scenarios, it is infeasible tomake |𝐷1 |×|𝐷2 |
comparisons, therefore blocking aims to retrieve a candidate set 𝐶
of entity mention pairs likely to match. In this way, the fine-grained
matching functions are applied only on such candidates, thus accel-
erating the ER pipeline. In the example in Figure 1, after the blocking
phase, the total number of comparisons is reduced from nine to
three. We design an effective blocking strategy for geospatial data
based on both textual similarities and spatial distance. Specifically,
the name similarity is measured using the Levenshtein Edit distance.
Each pair (𝑒𝑖 , 𝑒 𝑗 ) in 𝐷1 × 𝐷2, is deemed to be a candidate pair for
matching, if the following holds:

𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(𝑛𝑎𝑚𝑒𝑒𝑖 , 𝑛𝑎𝑚𝑒𝑒 𝑗 ) ≥ 0.6 ∧ 𝑑𝑖𝑠𝑡 (𝑒𝑖 , 𝑒 𝑗 ) ≤ 2000 (1)

We choose a high distance threshold to maximize the recall. In
fact, for many large geospatial entities, like parks or airports, the
coordinates are registered in positions far from each other, resulting
in a large distance.
Matching. Given a set 𝐶 of candidate entity mention pairs, we
aim to design a matcher that can accurately classify each pair as
matching or non-matching. To learn such an algorithm, we use a set
𝑇 of labeled data. This task falls into the Dirty ER category: entity
mentions in 𝐷1 and 𝐷2 are structured records, but attributes may
be missing or injected under different attributes (e.g., the street
name may be part of geospatial entity name).

3.2 Matching Model Overview
The architecture of Geo-ER is summarized in Figure 2. It can be
divided into three main components that jointly contribute to the
final matching decision: (1) The Language Model to compare the
textual attributes of the entities, (2) The Distance Embedding com-
ponent to compute and embed the spatial distance between the two
geospatial entities, and (3) The Neighbourhood Attention to embed
information of the surrounding geospatial entities.

3.3 Language Models For Entity Comparison
We design Geo-ER to model the textual and spatial features of an en-
tity using separate components and combine their representations

subsequently. To tackle the problem of textual attribute comparison,
as shown in the first two examples in Figure 1a, a deep semantic
understanding of the words is necessary.

Language models (LMs) based on the Transformer [35] architec-
ture, such as BERT [9] or GPT-2 [30], have established a new state-
of-the-art in a variety of NLP tasks [17, 41]. The success of this ar-
chitecture is largely due to the self-attention mechanism. The word
embeddings generated by Transformers are deeply-contextualized
and capture the different meanings that a word can have in different
contexts. Conversely, traditional word embedding techniques like
GloVe [28] or FastText [5] would produce the same result regardless
of the context. The Entity Resolution community is increasingly
adopting LMs for the matching task. Specifically, a pre-trained LM
can be fine-tuned on a new task and achieve impressive results. For
these reasons, we cast the textual attributes comparison problem as
a sequence-pair comparison task, and fine-tune BERT [9], a large
LM trained on masked language modeling (MLM) and next sen-
tence prediction (NSP), which best performed in our experiments.
Following Ditto [21] we serialize each entity as:

Serialize(𝑒) = [COL] 𝑎𝑡𝑡𝑟𝑖 [VAL] 𝑣𝑎𝑙𝑢𝑒𝑖 ... [COL] 𝑎𝑡𝑡𝑟𝑘 [VAL] 𝑣𝑎𝑙𝑢𝑒𝑘

where the token [COL] precedes the attribute name and the token
[VAL] its value. This schema signals to the model which attribute a
set of tokens belongs to and concurrently enables a schema-agnostic
model. A candidate couple of entities is joined as:

Combine(𝑒𝑖 , 𝑒 𝑗 ) = [CLS] Serialize(𝑒𝑖 ) [SEP] Serialize(𝑒 𝑗 ) [SEP]

where [SEP] is a special token to separate sequences and [CLS] is
used to encode the candidate pair into a 𝑑ℎ𝑖𝑑𝑑𝑒𝑛-dimensional vector
that will contain information on the similarity of the entities. The
output of the LM is a sequence of the same length of the input, where
each token is a 𝑑ℎ𝑖𝑑𝑑𝑒𝑛-dimensional contextualized embedding of
the input word. We select only the first one, corresponding to
the [CLS] token, and concatenate it to the output of the other
components for the final decision. The choice to keep the entities
together in the input comes with the advantage of a cross-entity and
cross-attribute comparison, without the need to align and compare
their encodings subsequently. This is an important advantage in
Dirty ER, since information injected under different attributes is
automatically aligned and compared, by means of self-attention
mechanism.

3.4 Distance Embedding
To match spatial entities from different sources, textual attributes
like name, address, or postal codemay not be enough for an accurate
result. In fact, different POIs may share the same name or be in the
same building, with a similar or identical address; conversely, the
same POI may be accessed by users from different entries, resulting
in different addresses. Moreover, as shown in Table 2, only a subset
of samples contains address information on both the compared
entities. The first candidate pair in Figure 1a, is a typical example
in which textual attributes cannot provide sufficient information
to correctly classify the pair. The spatial distance between the two
candidate entities must be appropriately considered by a geospatial-
linking model.
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Language models, like BERT, have a fixed-size vocabulary, and
use a word-splitting scheme2 to represent words that are not part
of it (e.g. ’embeddings’ = ’em’, ’##bed’, ’##ding’, ’##s’). In this way,
each word can be represented, at the very least, as a collection
of its individual characters. This approach carries a number of
advantages to represent unseen words, but the same does not hold
for numbers. In a recent study [37], Wallace and Wang et al. probe
numeracy in embeddings and show that sub-word models suffer
from the poor word-splitting method: numbers that are very similar
in value may have very different sub-word division, leading to a
model misinterpretation of the numbers.

To address this problem, we decide to add a separate component
for distance calculation and embedding in our architecture. This
choice of design enables numeracy in our model and proves to be
essential in the experiments. The distance between two candidate
entities 𝑖 and 𝑗 is computed using Haversine formula:

𝑑𝑖 𝑗 = 𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (𝜑𝑖 , 𝜑 𝑗 , _𝑖 , _ 𝑗 , 𝑟 ), (2)

where (𝜑𝑖 , _𝑖 ) are the latitude and longitude of entity 𝑖 and 𝑟
is the radius of Earth. The distance is successively scaled in
the [-1, 1] interval and embedded in an array of dimension
𝑑𝑑𝑖𝑠𝑡 , as follows:

𝐸𝑚𝑏 (𝑑𝑖 𝑗 ) = 𝛼⊤
𝑑𝑖𝑠𝑡

(
2 · 𝑑𝑖 𝑗

𝑚𝑎𝑥_𝑑𝑖𝑠𝑡
− 1) + 𝛽𝑑𝑖𝑠𝑡 , (3)

where 𝛼𝑑𝑖𝑠𝑡 ∈ R𝑑𝑑𝑖𝑠𝑡 and 𝛽𝑑𝑖𝑠𝑡 ∈ R𝑑𝑑𝑖𝑠𝑡 are learnable pa-
rameters and𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 is the maximum distance between
candidate entities chosen during the blocking phase.

Figure 3: Additive attention mechanism applied to nearby
entities: the central entity (white) attends its neighbours
(light grey) and computes different attention scores; context
vector is created by aggregating the neighbour entities using
their attention score

2https://github.com/alvations/sacremoses

3.5 Neighbourhood Attention
We observe that in some cases, two entities sharing a very
similar name and being located a short distance away still
cannot be deemed a match due to several factors. First, dis-
tance is sometimes affected by the Geo-positional system
inaccuracy. Second, a popular restaurant chain, for example,
may havemany businesses in a small dense area; on the other
hand, a small business with a unique name is more likely to
match with another with the same name, even if the distance
is not very precise. Moreover, for wide spatial entities, like
airports or parks, the distance may be very large, but the
two entities could still match. The last example in Figure
1a, shows two non-matching POIs that have the same name
and are very close in space. Using textual comparison and
distance alone, the two POIs cannot be classified correctly.
Figure 1b shows that the popular chain of coffeehouses Star-
bucks has four distinct businesses in the POI-dense area of
Orchard Road. The smaller pins in the picture are neighbours
of the candidate entities, retrieved from the two datasets that
are being joined. In the example, all the neighbours are Star-
bucks POIs and are spatially close to the candidate entities,
delivering useful information about the density of the district
and the type (e.g., a chain) of the POI itself.

We argue that the best way to face the challenge described
above, is to observe the neighborhood of the entities we are
comparing, and take it in account during classification. This
approach carries a number of advantages. First, the algorithm
can get an overview of the area and figure out if it is a dense
district or a sparse suburb. Second, the model can look for
entities with a similar name in the same area, that could be a
better match: this is a major insight to improve the matching
accuracy, since it signals how common a word, or a span of
words in the entity name, is in a certain area of the city.

We design a novel Neighbourhood Attention component
to embed information from surrounding entities. First, for
each candidate entity-pair (𝑒1, 𝑒2), we obtain a set of neigh-
bours that have similar name and are spatially close, dur-
ing the Blocking phase, using Eq. 1. We remove 𝑒2 from the
neighbourhood of 𝑒1 and vice versa, to prevent the candidate
entities to pay attention to each other. The names of the cen-
tral entities as well as the surrounding ones, are summarized
using BERT [9]. We use Graph Attention mechanism (GAT)
[36] with a single attention head, to obtain a contextualized
representation of the surrounding entities. Figure 3 shows
our Neighbourhood Attention component. A context vector
for the neighbourhood is built comparing the central POI to
its neighbours and using additive attention mechanism [2],
detailed in the following equations:

𝑧𝑖 =𝑊 · ℎ𝑖 (4)

𝑒𝑖 𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎⊤ (𝑧𝑖 | |𝑧 𝑗 )) (5)
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Table 1: Number of entities for each city and source

#Entities

City OSM FSQ Yelp

Singapore 23,985 31,936 13,699
Edinburgh 11,389 7,549 3,868
Toronto 38,286 18,851 17,204

Pittsburgh 9,387 11,579 6,356

𝛼𝑖 𝑗 =
𝑒𝑥𝑝 (𝑒𝑖 𝑗 )∑

𝑘∈N(𝑖) 𝑒𝑥𝑝 (𝑒𝑖𝑘 )
(6)

𝑛𝑖 = 𝑅𝑒𝐿𝑈 (
∑

𝑗 ∈N(𝑖)
𝛼𝑖 𝑗 · 𝑧 𝑗 ) (7)

Equation 4 is a linear transformation ofℎ𝑖 , which is the BERT-
encoding of node 𝑖 .𝑊 ∈ R𝑑ℎ𝑖𝑑𝑑𝑒𝑛×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 is the correspond-
ing learnable weight matrix. Equation 5 computes an un-
normalized attention score between node 𝑖 and its neighbour
𝑗 . | | denotes concatenation, the attention is parametrized by a
weight vector 𝑎 ∈ R2·𝑑ℎ𝑖𝑑𝑑𝑒𝑛 and 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 is the activation
function. Equation 6 normalizes the attention scores of the
neighbours, using the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 function. N(𝑖) is the set of
neighbours of 𝑖 . Finally, in Equation 7, the neighbours embed-
dings are aggregated together, weighted by their attention
scores and an activation function is applied.
Distance Bias. In Equation 5, the attention scores are com-
puted solely based on the semantic similarity of an entity
and its neighbours. In our network of POIs, each node is
connected to others with an edge whose weight is given by
the distance. In order to include this edge feature into the
attention score computation, we decide to add a bias term
that depends on the distance, to Eq. 5:

𝑒𝑖 𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎⊤ (𝑧𝑖 | |𝑧 𝑗 ) + 𝑏𝑎𝑡𝑡𝑛) (8)

𝑏𝑎𝑡𝑡𝑛 = 𝜙 · 1
𝑑𝑖 𝑗

(9)

where 𝑑𝑖 𝑗 is the distance between 𝑖 and 𝑗 , and 𝜙 is a learnable
parameter. With this adjustment, the algorithm can learn
to pay attention to an entity’s neighbours, not only based
on the semantic similarity, but also depending on spatial
distance.

4 EXPERIMENTS
To evaluate the effectiveness of our proposed method, ex-
periments are conducted on eight real-world datasets from
three different sources to compare with existing baselines.
To investigate the contribution of each component of our
model in the performance gain, we conduct an ablation study.
We also perform an analysis of the robustness to show how
the algorithm behaves when training data is not available
for a specific city.

Table 2: Statistics on the datasets used in the experiments.
The column #Positive shows the number of positive samples.
The column%Address shows the ratio of sampleswhere both
the entities have non-null address information

Source City Size #Positive (%) %Address

OSM-FSQ Singapore 19,243 2,116 (11.0%) 25.5%
Edinburgh 17,386 3,350 (19.3%) 45.5%
Toronto 17,858 3,862 (21.6%) 32.0%
Pittsburgh 5,001 1,454 (29.1%) 25.5%

OSM-Yelp Singapore 21,588 2,941 (13.6%) 51.6%
Edinburgh 18,733 2,310 (12.3%) 74.0%
Toronto 27,969 5,426 (19.4%) 39.9%
Pittsburgh 5,116 1,622 (31.7%) 38.8%

4.1 Datasets
We collect a total of 194,089 geospatial entities from three
real-world location-based services using the respective APIs:
Yelp3, Foursquare (FSQ)4 and OpenStreetMap (OSM)5. For
each data source, four cities are considered, namely Singa-
pore, Edinburgh, Toronto, and Pittsburgh. For each entity,
we collect a set of textual attributes and the geographical po-
sition, as specified in 3.1. The details on the entities collected
are shown in Table 1. We asked four human annotators to
find and annotate entity matches between OSM and FSQ
and between OSM and Yelp. Annotated pairs are used as
ground truth in the experiments. Two datasets for each city
are created, joining OSM-FSQ and OSM-Yelp. We form the
datasets following [25]. We first use the Blocking criterion
in Eq. 1 to obtain a candidate set 𝐶; for each pair in 𝐶 , if it
is present in the set of ground truth matches, we mark it as
match, else we mark it as a non-match. The statistics for each
dataset are summarized in Table 2.
4.2 Comparison Methods
We compare our work to state-of-the-art solutions for Entity
Resolution and for geospatial data integration. The results
are reported in terms of the F1 score on the test set, and the
epoch that resulted in the best performance on the validation
set.
• DeepMatcher [25] is the best performing ER solution
that does not rely on pre-trained language models. Its
architecture is based on RNNs for attribute values aggre-
gation, attribute comparison, and attention mechanism for
attribute soft alignment. It leverages FastText [5] to train
the word embeddings.

• Ditto [21] is the state-of-the-art solution for entity reso-
lution. It casts ER as a sequence-pair classification and the

3https://www.yelp.com/developers
4https://developer.foursquare.com/
5https://www.openstreetmap.org/

https://www.yelp.com/developers
https://developer.foursquare.com/
https://www.openstreetmap.org/
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Table 3: Experimental results: bold indicates highest F1 score. Last row shows the improvement of our model with respect to
the best baseline

OSM-FSQ OSM-Yelp

Singapore Edinburgh Toronto Pittsburgh Singapore Edinburgh Toronto Pittsburgh

DeepMatcher 76.6% 88.2% 78.4% 76.9% 80.2% 92.2% 88.5% 90.5%
SkyEx 72.1% 87.8% 88.0% 85.5% 81.1% 87.6% 91.1% 89.7%
Ditto 82.6% 92.1% 88.2% 88.7% 86.3% 94.4% 91.5% 93.5%
Geo-ER 89.8% 95.7% 94.6% 92.7% 92.9% 97.1% 96.6% 97.6%

Improvement +7.2% +3.6% +6.4% +4.0% +6.6% 2.7% +5.1% +4.1%

task is off-loaded to a pre-trained language model. Three
optimization techniques are also proposed: summarization,
domain knowledge injection and data augmentation. In the
experiments, we follow the Ditto paper and fine-tune the
RoBERTa [22] language model. We fix the sequence length
to its default value (256), turn off summarization, since
there are no descriptive attributes for this task, use data
augmentation with all the operators applied uniformly at
random, and do not inject any domain knowledge for a
fair comparison.

• SkyEx is a recent effort in geospatial data integration,
proposed in the work [18], in which Isaj et al. leverage tex-
tual similarity measures, semantic similarity between POIs
names using WordNet [23] and spatial similarity to pre-
dict if a pair of POIs mentions is a match. The algorithm is
based on Pareto optimality and needs no hyperparameters
to be tuned.

• Geo-ER is the proposed method. We leverage BERT as the
language model for textual attributes comparison. We com-
pute and embed distance between the two candidate POIs
and use neighbourhood attention to embed information
from surrounding POIs.

4.3 Experimental Settings
For each dataset, we randomly split 50%, 20%, and 30% of
the samples as the training set, validation set, and testing
set, respectively. The split is performed keeping the ratio of
positive and negative samples uniformly.We fix the sequence
length for the input of the LM to 128 for our model and adjust
the format of the input to meet the comparison methods
requirements. For DeepMatcher, the attributes are kept in
separated columns rather than a text sequence. For SkyEx
we generate the attributes using the similarity functions
provided by the original paper [18]. In the experiments, the
hidden size of BERT is 768, the embedding sizes of distance
and neighbourhood embeddings are both set to 256. During
the training, the model is optimized by Adam optimizer, with
a learning rate of 3e-5, a linearly decreasing learning rate
schedule and a batch size of 32. For each experiment, the

training phase runs for 10 or 15 epochs (depending on the
dataset size) and saves the checkpoint with the best F1 score
on the validation set. All the experiments with deep learning
frameworks are run on a Nvidia K80 GPU (12GB).

4.4 Performance Analysis
Table 3 shows the experimental results on test data. The algo-
rithmwith the highest F1 score on each dataset is highlighted
in bold. For clarity, in the last row we show the improvement
of Geo-ER over the best performing comparison algorithm.
From the results we can see that Geo-ER consistently outper-
forms the best baseline algorithms by at least 2.7% and up to
7.2%. Based on the results we also make a few comparisons
and summarize them as follows.

First, algorithms that leverage pre-trained language mod-
els (Geo-ER and Ditto) always deliver better results, regard-
less of the ability to model spatial information. In fact, Deep-
Matcher leverages RNNs and soft-alignment mechanisms to
compare attributes, but cannot model cross attribute rela-
tionships. SkyEx, instead, despite being designed to consider
the spatial character of the POIs, still relies on static string
similarity measures and compares attributes individually.
This result rewards our choice to fine-tune a pre-trained LM,
since it demonstrates to be superior to previous approaches
on the geospatial integration task. We observe that Geo-ER
consistently outperforms Ditto, the best baseline, and this
demonstrates the effectiveness of the three components of
Geo-ER.

A second interesting insight that emerges from the results
is that Geo-ER shows minor improvement with respect to
the baselines on datasets with a larger amount of available
address information. The last column in Table 2 shows the
amount of samples for which both entities contain non-null
address information. In both Edinburgh datasets, the address
information is more abundant, which would lead to better
performance of language modeling approaches, with a dif-
ference of only 2.7 and 3.6 points in F1-score. Conversely, in
Singapore (OSM-FSQ), Toronto (OSM-FSQ) and Pittsburgh,
addresses are more sparse, thus increasing the performance
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Table 4: Ablation study: on each experiment, one component is removed and results are reported

OSM-FSQ OSM-Yelp

Singapore Edinburgh Toronto Pittsburgh Singapore Edinburgh Toronto Pittsburgh Avg

Geo-ER 89.8% 95.7% 94.6% 92.7% 92.9% 97.1% 96.6% 97.6% -
w/o Neigh. emb. -1.8% -1.3% -2.2% -0.9% -1.9% -1.5% -1.4% -2.4% -1.7%
w/o Dist. emb. -5.5% -2.3% -4.2% -3.1% -4.8% -1.4% -3.7% -1.7% -3.3%

Table 5: Test of robustness: Geo-ER is trained on the dataset
indicated on the left and validation and test are performed
on the dataset indicated on top. The difference in F1 score is
compared to Geo-ER when trained on the same dataset it is
tested on

Singapore Edinburgh Toronto Pittsburgh

Singapore - 94.9% 94.7% 97.0%
(-2.2%) (-1.9%) (-0.6%)

Edinburgh
88.5% - 93.9% 95.6%
(-4.4%) (-2.7%) (-2.0%)

Toronto
90.8% 96.0% - 96.8%
(-2.1%) (-1.1%) (-0.8%)

Pittsburgh
90.4% 95.7% 94.2% -(-2.5%) (-1.4%) (-2.4%)

Avg ΔF1 -3.0% -1.6% -2.3% -1.1%

Table 6: Test of robustness: Ditto is trained on the dataset
indicated on the left and validation and test are performed
on the dataset indicated on top. The difference in F1 score
is compared to Ditto when trained on the same dataset it is
tested on

Singapore Edinburgh Toronto Pittsburgh

Singapore - 90.0% 84.7% 91.4%
(-4.4%) (-6.8%) (-2.1%)

Edinburgh
76.7% - 83.8% 90.4%
(-9.6%) (-7.7%) (-3.1%)

Toronto
80.4% 91.3% - 93.1%
(-5.9%) (-3.1%) (-0.4%)

Pittsburgh
79.7% 89.3% 86.4% -(-6.6%) (-5.1%) (-5.1%)

Avg ΔF1 -7.4% -4.2% -6.5% -1.9%

gap between Geo-ER and the baselines from 4.0%, up to
7.2%. This result emphasizes the importance of the geospa-
tial components in our model, especially when only partial
or incomplete address information is available.

4.5 Ablation Study
We conduct an ablation study to evaluate the contribution
of each part of the model: this is done by comparing our
original framework with its variants removing each time
a different component. Table 4 reports the results of the
ablation study. We observe that the model greatly benefits
from the geospatial components, which is consistent with
the results report for the performance analysis. Specifically,
the distance embedding alone leads to an improvement that
ranges from 1.2% to up to 5.5%, with an average of 3.3%.
As expected, embedding the distance separately from the
language model, gives the algorithm a superior numerical
reasoning ability. Similarly, the neighbourhood embedding
mechanism significantly enhances the performance, of 1.7%
on average, with a minimum of 0.9% and a maximum of 2.4%.
In summary, the average improvement achieved by the two
components together, across the eight datasets, is 5.0%.
From the ablation study, we can conclude that each com-

ponent is essential and has an important contribution to the
overall results.

4.6 Robustness analysis
In real world applications, labeled data may not be available
for a specific place: manually labeling samples and training a
different model for each city is very expensive and in many
cases infeasible. This set of experiments is to evaluate the
robustness of our model when making predictions for a city
on which the model was not trained. We also compare the
results with Ditto [21], which is the best performing baseline
algorithm as shown in the previous experiments. We conduct
our analysis on the four datasets obtained by joining OSM
and Yelp. The datasets sizes and splits are fixed as in the
main experiments. In both Tables 5 and 6 the rows indicate
the city that is used for training, and the columns indicate
the city that is used for validation and test. From the results
in Table 5, we observe that our solution experiences only
a slight reduction in terms of F1 score when tested on an
unseen city. The largest decrease of performance is observed
when testing on the Singapore dataset, and training on other
cities, with an average ΔF1 of -3.0%. This might be caused
by Singapore being the only Asian city and, even being an
English-speaking country, is rich of POIs and street names
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that are not common in its western counterparts. As shown
in Table 6, Ditto faces amuch higher decrease in performance,
from a minimum of 1.9% up to 7.4%. Ditto relies solely on a
pre-trained LM, which is highly affected when unseen words
(like POI or street names) appear in the test set. On the other
hand, our model leverages two geospatial components that
display robustness with respect to the training set.

5 CONCLUSION
We present Geo-ER, an ER system to integrate geospatial
data. Experimental results show its advantages over exist-
ing approaches. The effectiveness of our solution can be
attributed to its semantic understanding, attribute-agnostic
architecture, numeracy, and spatial capabilities. The ablation
study proves the validity of each component. Robustness
analysis emphasizes Geo-ER readiness for real-world use
cases. Future work directions include the introduction of
blocking phase into the learning framework, to build an end-
to-end system, as well as a study on how to improve language
models, now very sensitive to human typos.
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A APPENDIX
A.1 Data Sources
More details on the sources of data are provided below:

• Yelp is a platform for crowd-sourced reviews of venues.
It provides a complete record of name, address, zip
code, and coordinates for each POI.

• Foursquare is a Location-based Social Network. Users
gain points and rewards performing check-ins in the
venues they attend. The dataset provides anonymized
users’ check-in data: the schema of attributes we select
is the same as Yelp, but address information is provided
much less often.

• OpenStreetMap is a platform to collaboratively cre-
ate a free geographic database of the world. Users
can add POIs (amenities), represented as geographical
points. We select the same schema as the two previous
data sources.

A.2 Address information
In table 2 is shown the percentage of samples where both
the entity have non-null address information. We add the
percentage of POIs with non-null address information for
each city and source in table 7.

Table 7: Percentage of POIs with non-null address informa-
tion, for each city and source

% of POIs

City OSM FSQ Yelp

Singapore 40% 54% 99%
Edinburgh 57% 61% 99%
Toronto 33% 72% 98%
Pittsburgh 28% 58% 97%

A.3 Sensitivity of parameters
We examine the influence of different parameters settings
on Geo-ER performance. Specifically, we evaluate how the
embedding size of Distance embedding and Neighbourhood
embedding affect Geo-ER in terms of F1-score, accuracy, and
recall. We vary both the hyperparameters with values in the
set {32, 64, 128, 256, 512}. During the parameters’ sensitivity
experiments, other parameters remain fixed to their default
values. Due to space limits, we only report results relative to
the Pittsburgh OSM-Yelp dataset. Analogous behavior can be
observed on the other datasets.
Figure 4 shows the performance comparison of Geo-ER

with different values of Distance Embedding size (4a) and
Neighbourhood Embedding size (4b). In general, a larger em-
bedding size grants higher representation capabilities, that
lead to better performance. Coherently with the ablation
study, showing a higher contribution of the Distance Embed-
ding, we observe that a reduction of its size brings a larger
decrease of performance, especially in terms of F1-score. We
find 256 to be the best dimension for both the parameters and
observe a reduction of the model effectiveness with larger di-
mensions, probably due to the increasing model complexity
and its tendency to overfit.

(a) Distance Embedding (b) Neighbourhood Embedding

Figure 4: Sensitivity of parameters
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